

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-3590

JAN 3 0 2008

REPLY TO THE ATTENTION OF

RRG Clayton Chemical Site - Soils

CERTIFIED MAIL RETURN RECEIPT REQUESTED

RRG/CLAYTON CHEMICAL SITE PRP Group c/o: Sharon R. Newlon, Esq.
Dickinson Wright, PLLC
500 Woodward Avenue, Suite 4000
Detroit, MI 48226

Re: Second Amendment to October 27, 2005 Administrative Settlement Agreement and Order on Consent for Removal Action for the RRG/Clayton Chemical Soils Site, Sauget, IL (No. V-W-05-C-829)

Dear Madam:

Enclosed please find an executed copy of the Second Amendment to the October 27, 2005, Administrative Settlement Agreement and Order on Consent for Removal Action for the above-referenced Site pursuant to Sections 104, 107 and 122 of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980, as amended, 42 U.S.C. Sections 9604, 9607 and 9622. Thank you for your cooperation in this matter.

If you have any questions regarding this Amendment to the Administrative Settlement Agreement, please contact Tom Turner, Associate Regional Counsel, at 312/886-6613 or Kevin Turner, On-Scene Coordinator, at 618/997-0115.

Sincerely yours,

Richard C. Karl, Director

Rechard C Kal

Superfund Division

Enclosure

cc: State Agency Superfund Program Manager

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region 5

IN THE MATTER OF:)	Docket No. V W 05-C-829
	Ć	
RESOURCE RECOVERY GROUP/)	ADMINISTRATIVE SETTLEMENT
CLAYTON CHEMICAL SITE)	AGREEMENT AND ORDER ON
Sauget, Illinois)	CONSENT FOR REMOVAL ACTION
_)	Proceeding Under Sections 104, 107 and
Respondents:)	122 of the COMPREHENSIVE
•)	ENVIRONMENTAL, RESPONSE,
Listed in Attachments A & B)	COMPENSATION, AND LIABILITY
)	ACT, as amended, 42 U.S.C. §§ 9604,
)	9607 and 9622

SECOND AMENDMENT TO ADMINISTRATIVE SETTLEMENT AGREEMENT AND ORDER ON CONSENT FOR REMOVAL ACTION PURSUANT TO SECTIONS 104, 107 and 122 OF THE COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT, as amended, 42 U.S.C. §§ 9604, 9607 and 9622

The Administrative Settlement Agreement and Order on Consent ("Order"), U.S. Environmental Protection Agency ("U.S. EPA") Docket No. V W 05-C-829, issued on 10-27-05 under Sections 104, 107 and 122 of the Comprehensive Environmental Response, Compensation and Liability Act, 42 U.S.C. §§ 9604, 9607 and 9622, is hereby modified as follows:

ORDER i) Attachments A & B of the Order shall be amended to include additional performing and nonperforming members of this Order as identified in the attachments A & B; ii) In addition the Order shall be amended to include the attached Work Plan Amendment:

This Second Amendment to the Resource Recovery Group/Clayton Chemical Site Administrative Settlement Agreement and Order on Consent is hereby incorporated into the Order as if it were originally a part of the Order; all terms, conditions, and stipulations of the Order shall apply to this Second Amendment.

Rv.

Richard C. Karl, Director Superfund Division

U.S. Environmental Protection Agency

Region 5

IN THE MATTER OF:

Resource Recovery Group/Clayton Chemical Site (soil)

1 Mobile Avenue, Sauget, Illinois

The undersigned representative of Respondent certifies that he or she is fully authorized to enter into the terms and conditions of this Settlement Agreement and to bind the party they represent to this document.

Agreed this 21st day of July, 2006.

For Respondent Rexam Beverage Can Company

By Jamaes L. Kiser

IN THE MATTER OF:

Resource Recovery Group/Clayton Chemical Site (soil)
1 Mobile Avenue, Sauget, Illinois

The undersigned representative of Respondent certifies that he or she is fully authorized to enter into the terms and conditions of this Settlement Agreement and to bind the party they represent to this document.

Or Products Morth America, Inc.

Agreed this 19 day of September , 2006.

For Respondent

By: //////
Title: Regional Manager STAM

Attachment A

Performing Members of the PRP Group

Amended July 2007

Afton Chemical Corporation

Allied Healthcare Products, Inc.

American Recreation Products, Inc.

ADM (Archer Daniels Midland)

Anheuser-Busch Company, Inc.

including affiliates St. Louis Refrigerator Car Co., and Metal Container Corporation

Arris International, Inc.

Baker Petrolite Corporation

Bemis Company Inc.

Cerro Flow Products, Inc.

Chemisphere Corporation

Chicago Drum, Inc.

Conopco, Inc.(Cheseborough Ponds)

Crown Holdings Inc., .

including Crown Cork & Seal Co., Inc., and Continental Can Co. (f/k/a Crown Beverage Packaging, Inc.)

Curwood Inc.

DaimlerChrysler Corporation

Dow Chemical Company (The)

ExxonMobile Oil Corporation

Ford Motor Company

The Glidden Company

Hussman Corporation

Illinois Central Railroad Company

f/k/a Illincis Gulf Central Railroad/ Gulf, Mobile & Ohio Railroad

INX International Ink Company

Koch Industries, Inc.

Lear Corporation

including United Technologies

Lincoln Industrial Corporation

Mallinckrodt Inc.

Marchem Corporation

McIntyre Group, LTD

Mitsubishi Motors North America, Inc.

Nascote Industries, Inc.

National Coatings Inc.

Nordenia/M&W Packaging

Norfolk Southern Railway Company

Ofin Corporation

Penn Aluminum International, Inc.

Precoat Metals (Sequa Corporation)

Rexam Beverage Can Company

Riley Brothers Co

Sterling Lacquer Manufacturing Company

Superior Oil Co.

Teva Phamaceuticals

including BioCraft Labs

Tnemec Company, Inc.

U.S. Paint Corporation

Valentec Wells, LLC

Walker Paducah Corp

Attachment B

Non-Performing Members of the PRP Group

Amended July 2007

Agfa Corporation, as parent and successor to Lastra Amercia Corp.

Alberici Constructors, Inc. f/k/a Alberici Construction Company

American Greetings Corp.,

Aramark Uniform & Career Apparel

including Aratex Services, Inc. and Todd, Inc.

Associated Electric Cooperative, Inc. (AECI)

BASF Corporation

Bachman Machine Co.

Basler Electric Co.

Bell Sports, Inc.

The Boeing Co.

including McDonnell Douglas

BP Products North America Inc.

Brewer Science Inc.

Carlisle Syntec Inc.

ChemCentral Midwest Corporation

Chevron Environmental Management Company for itself and on behalf of Chevron USA, Inc.

Clean The Uniform Company St. Louis f/k/a Clean Coverall Supply Co., Inc.

CNH America LLC as alleged successor to DMI

Cooper US, Inc. (Bussman)

Crane Co.

Elementis Chemicals Inc.

including Thompson Hayward Chemical Co/Harcros Chemicals

EnPro Industries, Inc.

Esco Technologies

Fort Transfer Co.

Gardner Denver, Inc.

General Motors Corporation

Hallmark Cards, Inc.

Heritage Environmental Services, L.L.C.

Illinois Tools Works Inc. (Diagraph)

Interlake Material Handling, Inc.

The Grigoleit Company

The Knapheide Mfg. Co.

Komatsu American International Co.

Komatsu Mining Systems, Inc.

LHB Industries

Lastra Amercia Corporation

Masterchem Brands, Inc.

MeadWestvaco Consumer Packaging Group, LLC f/k/a AGI Incorporated

The Meramec Group

Mid States Paint

Morton Metalcraft

Nashua Corporation

Nooter Corporation

P D George Company

Parsons Company

Pechiney Plastic Packaging Inc.

Perma Fix Environmental Services

Polyone Corp., Successor to Dennis Chemical Co.

WORK PLAN AMENDMENT

1.0 INTRODUCTION

1.1. GENERAL

The following is an Amendment to the Work Plan that describes those activities that are being conducted to address the presence of mixed PCBs and characteristic hazardous wastes in the excavated soils and the containment of on-site soils within the central processing area at the Site as shown on **Amendment Exhibit 1**. The Group will be treating the excavated soils for VOCs and lead, as appropriate, and disposing of the stockpiles according to their remaining TSCA profile. This Amendment necessarily impacts the following sections of the Work Plan: Section 4.0 – Excavation Activities, Section 5.0 – Removal Action Closeout activities, and Section 7.0 – Project Schedule.

2.0 AMENDMENTS

2.1. EXCAVATION ACTIVITIES - SOIL TREATMENT

The soils from the excavation activities completed at the site have been stockpiled. Initial disposal samples collected from the stockpiles demonstrated that stockpiles #2 through #6 had analytical results of VOCs above TCLP levels and PCBs above TSCA disposal thresholds. Stockpile 2 also had TCLP levels of lead above the RCRA disposal threshold. Stockpile #1 had neither VOCs nor PCBs and has already been properly disposed of offsite. Stockpile #7 contained no VOCs above TCLP levels, but did contain PCBs. See Table 1.

Based upon updated sampling, as shown in Table 2, Stockpiles 2, 4 and 5C will be treated, as necessary, for VOC components using chemical oxidation, as described below. Stockpile 2 will also undergo lead stabilization prior to disposal, as described below. It is estimated that approximately 1000 tons (700 cubic yards (yd³)) of soil will undergo chemical oxidation and/or lead stabilization. Soils with VOCs and lead below the TCLP levels for those constituents, including both treated materials and the remaining stockpiles on-site, will be shipped off-site in accordance with Work Plan Section 3.6.6 to a TSCA approved landfill. The stockpiles are currently underlain by plastic. Loading of the stockpiles for treatment and disposal will include some limited scraping of soils underlying the plastic, as is customary. No further excavation of on-site soils will be conducted. Further soil sampling will be limited to sampling of treated, stockpiled soils to confirm the adequacy of their treatment, as described in sections 2.1.1 and 2.1.2, below.

2.1.1 Chemical Oxidation

The chemical oxidation treatment process will take place within four mix boxes of 40 yd³ capacity each. For each batch, 25 yd³ of soil will be loaded into each mix box for processing. The oxidizing reagent (potassium permanganate) will be added to each batch of soils simultaneously with water, the soils will be mixed, and then the 4 soil batches will be staged into a single covered stockpile on plastic for overnight reaction. Processing time within the mix boxes for each batch is estimated at two and one-half hours. Following

overnight reaction time, samples will be collected from the staging piles for TCLP analysis for all RCRA TCLP VOCs. Analysis of the samples is estimated to be complete within 3-4 days. Following confirmation of treatment to below applicable TCLP levels, the soils will be loaded for disposal. Appropriate measures will be taken to control material during the transfer process for treatment. During the various soil loading processes, a fine water mist will be used, as necessary, to control dust. During the chemical addition and mixing processes, the addition of water will be necessary to facilitate oxidation, so the soils will be kept moist.

2.1.2 - Lead Stabilization

The lead stabilization process will be conducted in place at the location of Stockpile #2. A reagent, Enviroblend, a mixture of magnesium oxide and calcium phosphates, will be added to the pile and mixed in as it is added. A fine water mist will be directed onto the stockpile during the addition of the reagent. Following thorough mixing, samples will be collected and analyzed for TCLP lead. Analysis of the samples is estimated to be complete within 3-4 days. Following confirmation of adequate stabilization, the soils will be treated for VOCs via chemical oxidation, as described in section 2.1.1., above.

2.2. PROJECT SCHEDULE FOR SOIL TREATMENT

Treatment of the soil has begun. The on-site treatment and off-site shipment of the soils and backfilling of the site is anticipated to continue for approximately eight (8) weeks, assuming that once through treatment of the stockpiled soils will be adequate and that weather conditions will be amenable to the treatment technology. The need for further treatment or poor weather conditions may extend this schedule. Please note that this project timeline is based on an assumed waste shipment rate of 250 tons per day (10 trucks each with 25 tons). The availability of approved waste hauling vehicles and the ability to schedule and load those vehicles on a consistent basis throughout the project has the ability to affect the project timeline.

2.3. REMOVAL ACTION CLOSEOUT - CAP INSTALLATION

EPA intends to issue a Unilateral Administrative Order to pursue certain recalcitrant parties for construction of a cap and implementation of a cap operations and maintenance ("O&M") plan at the Site. EPA will utilize its enforcement authorities under that Order to assure performance of the required cap construction and O&M activities. However, EPA retains its enforcement discretion in all matters involving removal actions at the Site. The PRP Group will not be relieved of such responsibility, and in the event the other parties fail to perform some or all of the cap construction and O&M plan, EPA may seek to hold the PRP Group responsible for any outstanding cap obligations.

A notice of completion of work will be issued by the OSC following completion of construction of the cap and approval of the O&M plan.

TABLE 1

			RESOUR	SOLIDS	REMOVAL ACTIO	HEMICAL COMPAI ON ANALYTICAL RE ARACTERIZATION		SITE			
	RCRA Toxic Concentration/TSCA Threshold										
ample Date	7 1	3/24/2006	3/31/2006	3/31/2006	4/6/2006	4/19/2006	4/18/2006	4/14/2006	4/18/2006	4/10/2006	4/15/2006
ample Time	∃ -∤	1430	1100	1.200	1600	1400	1410	1420	1,900	1530	1660
vew Sumple ID		Stockpile #1	Stockpile #2	Stockpile #3	Stockpile 64	Stockpile #5	Stockpile #58	Stockpile #SC	Stockpile #4	Stackpile #68	Stockpile #7
lew Sample Duyth	_} [_			
ID Reading											
'arameter TCLP Metals			•								
Arsenic	5.0	NA	0.013	0.0052	0.005	ND	NA	NA	р	NA	1
Serium	100.0	NA	0.96	1.2	0.44	0.91	NA	NA	1.9	NA	
Cadmium	1.0	NA	0.045	0.23	0.079	0.1	NA	NA	0.15	NA	0.0
							·				
Dromium	5.0	NA NA	0.05	0.087	0.019	0.031	NA NA	NA.	0.067	NA NA	
ead	5.0	NA	18	1.2	1.1	0.31	NA	NA	1.5	NA	
ielenium	1.0	NA.	0.0044	0.9056	ND	ND	NA	NA	ND	NA	
idver	5.0	NA.	0.0027	ND	0.017	ND	NA.	NA	ND	NA.	
Mercury	0.2	NA	ND	0.00015	ND	ND	NA	NA.	70	NA	
PCBs											
Aracior 1016		מא	ND	ND	ND	NA.	ND	ND	NA	ND	
Aroclor 1221		ND	ND	ND	ND	NA	NO	ND	NA	ND	
Aroclor 1232		NO	70	ND	ND	NA	ND	ND	NA	NO	
Arocior 1242		1.2	50	2400			510	360	NA.	95	
Arocler 1248		NO	ND	ND	ND	NA NA	ND	ND	NA.	NO	
Arocior 1254		0.95	40	680	33	NA	220	77	N/A	25	
Aroclor 12i0		0.46	11	NE.	21	NA NA	NC	43	N/	31	
Total	50	26	101	3080	-	1	73	400	N.	159	Į.

RESOURCE RECOVERY GROUP/CLAYTON CHEMICAL COMPANY (RRG/CLAYTON) SITE SOLIDS REMOVAL ACTION ANALYTICAL RESULTS SOIL STOCKPILE WASTE CHARACTERIZATION SAMPLES

	- 828 · T						_				
ı	RCRA Toxic Concentration/TSCA	1	1	, ,	()	, I	, ,	t J	, 1	i .	
1	Threshold	ι ,	1 1	,)	1 1	, I	, ,	, ,	, 1	ı	
Sample Date	······	3/24/2006	3/31/2006	3/31/2006	4/4/2006	4/18/2006	4/18/2006	4/14/2006	4/18/2906	4/14/2006	4/14/2006
Sample Time	f r	1430	1100	1200	1600	1400	1410	1420	1900	1830	1400
New Sample ID] [Stockpile #1	Stockpile #2	Stockpile 43	Stockpile #4	Stockpile #5	Stockpile #58	Stockpile #9C	Stockpile #6	Stockpile #68	Stockpile #7
New Sample Depth	ſ	·		,	1	,	,			1	i
PID Reading	1 <i>J</i>	'			<u> </u>						
Parameter				,	1						
ICLY SESSIVULATILE	ORGANIC COMPOUN	<u> 105</u>									
2,4,5-Trichlorophenol	400.0	NA NA	ND ND	ND.	NA NA	ND	NA.	NA	ND.	NA NA	N
2,4,4-Trichlorophenol	2.0	NA	ND ND	ND.	NA	ND	NA	NA	ND	NA	NI
2.4-Dinitrotolume	0.13	. NA	ND	ND	NA	ND	NA	NA	ND	NA	NI
7						,					
2-Methylphenol	200.0	D NA	0.0074	ND	NA NA	ND	NA NA	NA	0.02	NA NA	N
3/4 Methylphenol	400.0) NA	0.024	0.008	NA NA	ND	NA	N'A	0.079	NA	0.02
Hexachiorobenzene	0.13	NA	ND	ND	NA	ND	NA	NA	ND	NA NA	N
Hanchlorsbuudiene	Q.	NA	ND	ND	NA.	ND	NA	NA	ND	NA	N
Hexachiorosthane	34		ND	ND		1		NA NA	ND	NA NA	N
										· · · · · · · · · · · · · · · · · · ·	
Nitrobenzene	2.0	NA.	ND	ND	NA NA	ND	NA	NA NA	ND	NA NA	<u> </u>
Pentachiorophenol	100.4	NA.	ND	ND ND	NA NA	ND	NA	NA	ND	NA NA	,
Pyridine	5.0	NA	ND	ND	NA	ND	NA	NA	ND	, NA	

RESOURCE RECOVERY GROUP/CLAYTON CHEMICAL COMPANY (RRG/CLAYTON) SITE SOLIDS REMOVAL ACTION ANALYTICAL RESULTS SOIL STOCKPILE WASTE CHARACTERIZATION SAMPLES RCRATORK Loncentration/TSCA Threshold Secuple Date 3/24/2006 4/14/2006 4/14/2006 4/18/2006 1900 3/31/2006 3/31/2006 4/6/2006 4/11/2006 41970 4/14/2006 Sample Time New Sample ID 1430 1100 1200 1600 1400 1410 1420 1530 1600 Stockpile #1 Stockpile 05 Stockpile #58 Stockpile #2 Stockpile #3 Stockpile #4 Stockpile #5C Stockpile #6 Stockpile #68 Stockpile #7 New Sample Depth PID Reading Parameter TCLP VOLATILE ORGANIC COMPOUNDS 1,1-Dichioroethene 0.34 ND 0.44 NO NA NA ND NA 1,2-Dichlaroethene 0.5 NA ND NA 0.04 NA NA ND 20 NA 1.4-Dichlorobenzene 7.5 0.96 1.20 NA NA NA NA 017 0.05 NA NA 0.07 NA 3.6 Carbon Tetrachloride NA NA 0.5 ND ND ND NA ND 0.84 Chiorobenzene 100.0 NA 3.0 0.51 NA 0.01 Chloroform ND ND NA 0.01 NA 0.067 Methyl ethyl ketone 200.0 NA ND 0.63 NA ND NΑ NA 0.00 Tetrachioroethene 0.7 NA NA NA 3.1 2.7 2.2 0.74 1.7 0.036 0.5 NA NA Trichioroethene 29 0.56 NA ND NA Vin yi chloride ND ND ND NA NA ND TCLF-FESTICIDES 0.003 Chilordane NA ND ND NA NO NA NA ND 0.020 NA ND ND NA Endna ND NO NA NA NA garnne-BHC 0.4 ND 0.001 NA ND NA ND NO NA ND 0.000 NA ND Heptachior ND ND NΛ ND NA 0.000 NA ND Heptechlor epoxide NA ND ND ND NA ND NA NA Methoxychlor 10.d NA ND ND ND ND NA NO NA NA

NA

ND

NA

NA

ND

Toxaphene

0.5

NA,

ND

ND

Nd

NA

				50LID5	REMOVAL ACTIO	NANALYTICAL RE RACTERIZATION					
	RCRA Toxic Concentration/TSCA Threshold										
ample Date	1	3/24/2006	3/31/2006	3/31/2006	4/6/2006	4/18/2006	4/14/2006	4/19/2006	4/11/2006	4/14/2006	4/18/2006
emple Time] [1430	1100	1200	1600	1400	1410	1,420	1900	1830	1600
lew Sample ID] [Stockpile #1	Stockpile #2	Stockpile #3	Stockpile #4	Stockpile #5	Stockpile #58	Stockpile #5C	Stockpile #6	Stockpile #69	Stockpile #7
lew Sample Depth) [
ID Reading	L		I		l						
arameter										· · · · · · · · · · · · · · · · · · ·	
CLF HERBICIDES										п	
A,\$-TP	1.0	NA	ND	ND	NA NA	ND.	NA.	NA	ND	NA.	
4-D	10.0	NA	ND	ND.	NA.	ND	NA.	NA	NO	NA	
ENERAL CHEMISTA	Ÿ I										
yanida		NO	3.0	4.1	0,70	6.0	NA.	NA NA	7.0	NA	
leactive Sulfide		4.4	33	9.8	7.3	NO	NA.	NA.	NO	NA NA	
henolics		1,6	11		36	29	NA NA	NA NA	42	NA NA	
niet Filter Test		ND	ND	ND	ND	PASS	NA NA	NA NA	PAS	NA NA	P
ж		6.9	6,4	6.8	6.4	7.0	. NA	NA.	73	NA	
mitibility		>60	NA.	NA	NA	>60	N <u>A</u>	. NA	>60	NA.	
ixtractable Organic		ND	150	780	540	445	NA	NA	1,530	NA	:
ercent Mousture		11	NA	NA	NA	10.3	11.7	11.1	11.5	13.6	

Notes:

- 1. All concentrations are reported in parts per million.
- 2. Analytical data shown is from samples collected during 2005-06 Removal Arbon elloris.

- 3. Analytical data shown is being evaluated against the IEPA Soil Remediation Objectives for Communicial/Industrial Properties, Construction Worker values (IEPA Construction Workers SROs).
 4. IEPA Construction Workers SROs (column 8) are boilded and Italicized for emphasis.
- 5 Sheded cells are to indicate specific compounds from 200) Site Assessment that exceeded the evaluation standard (the EPA Region 9 Preliminary Remediation Goals (PRGs).

 6. Sheded and boided cells represent data that exceeded the IEPA Construction Worker SRO.

 7. NR means data was requested but not reported.

 8. Blank cells means data was neither requested nor reported.

- 9. ND means the analyse was not detected.

TABLE 2

				TABLE 2	MICH COMBANIVER	CATI AVIONO SITE			
<u> </u>			SOLH	OS REMOVAL ACTION A	MALYTICAL RESULTS	CPCENT TOTAL STATE			
				STOCKPALE M	MPLES				
	RCRA Tenir Concentration/TSCA Threshold								
Sample Uste Sample Time		1/21/2006 1625	A/2 L/2006 1445	8/21/1006 1466	4/21/2006 1900	6/23/2006 830	4/21/2006 1515	8/23/2004 925	4/23/2006 105
Stockpile 8	1	Stockpile #2	Stockpile #3	Sinchplin 9 (418	Stockpille 85	Stockpile 956	Stock pile (SC	Stockpile 96	Stackpile 87
Sample 10	 	5-002105-GD-005	5-062106-GD-001	3-M2164-GD-667	\$-002106-G-0-002	5-062206-CD-001	5-002106-CID-003	S-002206-GD-012	5-062306-GD-011
No. of Sample Aliquets		•	14	12 (6 from 4, 6 from 48)		4 (2 from each sub-pile)	•	16	16
Parameter									
TCLI' Meula			<u> </u>			 		 	
Areste	5.0	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA
Barrium	199.9	NA	NA .	NA_	NA.	NA .	NA .	NA NA	NA NA
Cadaman	1.0	NA .	NA NA	NA NA	NA .	NA NA	NĂ.	NA NA	NA NA
Chromium	5.0	NA	NA NA	NA .	NA NA	NA NA	NÃ	NA	NA NA
bud	5.0	NA .	NA NA	NA	NA NA	NA.	NA NA	NA :	NA NA
5-k-wum	1.0	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	SA	NA .	NA	NA .	NA.	NA .	NA	NA NA	NA .
Mercury	6.2	NA NA	NA NA	NA NA	NA	NĀ.	NA	NA NA	NA NA
eca.									
Aria bir IIII6		ND	ND	ND	ND	ND	NO	ND	ND
Ares for 1221		ND	ND	ND ND	ND	NO	ND	ND	ND
Ann by 12V		ND	ND	ND	ND	NO	ND	ND	ND
Arm for 1242			(AD)	n		(-II)	241	5#	ND
Vurya 151k		NO	ND	ND	ND	NO.	ND	ND_	NO
Ann ber 1284		30	2th1	27	¥7	198()	93	\$n	L7
Analor (260		ND	ND	ND	ND	ND	NO	57	ND
Yeshi	54.0	¥	1580	99	154	1126	362	16.5	47
Original Tutals		101	3000	74	NA	730	40	155	ω
Original Sample Aliquets		12	ν	12	VI	12	10	mun - 26, 68 - 12 (PCB cmly)	15
7018 (2111)									
TCLP SEATIVOLATILE ORGANI									
2.4,5-Tru, litter, optioneral	600.0	ND	ND	ND	ND	ОМ	ND	ND	ND
2.4.6 Tra blorophorad	2.0	DN	ND	ND	ND	ND	NO	ND	NO
2.4 Dentroudury	412	ND	ND	ND	ND	ND	D	NO	ND
2 Melholphasei	206.0	ND	ND	ND	ND	ND	ND	NO	ND
1/4 Methylphened	400.0	ND	ND	ND ND	NO	NO	NO	NO	ND
three historian more	4.13	ND	ND	ND	ND	NO	NO	ND	ND
H-saldunducuları	0.5	ND	ND	ND	ND	ND.	ND	710	ND
H. v.n Ishayardharar	2.0	ND	ND	ND	ND	ND	ND	ND	ND
Vitrobetszenie	2.0	ND	ND	ND .	NO	ND	ND	ND	ND
Amtachlussphered	100.0	ND	NO	ND	NO	NO	ND	ND	ND
Peralus	5.0	ND	ND	ND	ND	ND	NO	ND .	ND
			1	1		I			

RESOURCE RECOVERY CROUNCLAYTON CHEMICAL COMPANY (RRC/CLAYTON) SITE SOLIOS REMOVAL ACTION ANALYTICAL RESULTS STOCKPILE SAMPLES

	RCRA Toric		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
	Concentration/TSCA Threshold								
Sample Date		4/21/3 004	4/21/7804	4/21/3004	6/21/2004	I/21/2006	4/21/2004	4/23/2896	4/23/3006 985
Sample Time Stockpile 8		1625 Stockpile 92	146 Stockpile (1)	1465 Stock pills 4 4/48	1500 Brackpile #5	Stockpile 45B	1515 Stockpile #5C	925 Stockpile 94	Stockpile #7
L			<u> </u>					i ————	S-642206-GD-011
Sample ID No. of Sample Aliquets		5-862105-GD-008	5-002106-CID-001 14	5-002106-CD-007 12 (8 from 4, 6 from 60)	9-882165-GD-882	5-862306-GD-889 6 (2 from each safe-pile)	6-852106-GD-903	\$-802396-GD-812 16	16
						<u> </u>			
TOTAL SEMIVOLATILE ORGAN	NC CON ABOUTEDS								
	L COMPOSITO	<u> </u>							
B-svedilplankpin.		ND	ND	ND	11,72	ND	043	ND	MD
Anthonore		NO	ND	NO	ND	ND	NO	ND .	ND
Carbarate		ND	NO	NO	ND	ND	ND	ND	MD
Dr. n. houly! phothadate		57	24	seu	IJ	5.7	ъ	21	ND
fluorathes-		22	ND	2.5	11.44	ND	24	1,1	NO
Pytope		37	0.72	6.1	(1.54	ND	24	u_	1.5
Buty) heavy) phthelick						ND	2.2	ND	ND
		ND	ND	NO	ND				
3,4 Dalikurdsuzidirə		ND	ND	ND	ND	DND	B	ND	ND
B-mor (a) double a ran-		11	NO	1.1	4151	ND	1.2	ND	ND
Chrys-m		2.1	n.pr	\to	0.41	ND	1.7	14	11
ra-(2 EthyBhrayl)philhalais		ผ	180	ND	*	14	210	710	17
Districtly Hillings		NO	ND	ND	NO	ND	ND	ND	NO
Barrelli) (harranthan		17	ND	ND ND	1128	ND	15	ND	ND
B-11.04k)Anuranthum-		1.5	ND	NID	0.26	ND	13	ND	ND
Benzidajpyniu:								ND	ND
		13	NO	NID	D.24	ND	11		
indragi23-edjysem		ND	ND	100	ND	ND	0.62	NO	ND
Deterror(ed) benthracers		ND	ND C	ND	ND	ND	ND	ND	ND
Accesphilloser		ND	ND	MD	ND	ND	0.5	ND	ND
2.4 Dinan-phraid		NO	ND	NO	ND	NO	ND	ND	ND
4 Netrophesus		ND	ND	ND	ND	ND	ND	ND	ND
Debranduran		ND	ND	ND	ND	ND	Q.48	ND	ND
2.4 Dinstrutiduers		ND	ND	ND	ND	ND	ND	ND	ND
De thyl phthalab		ND	ND	NO.	NĎ	ND	ND	ND	ND
Fluoren		ND	NO	ND	ND	NĎ	ND	ND	ND
4 Chimagarasi basasi salar		ND	ND	ND	ND	ND	ND	ND	ND
J.Netzeroulow		ND	ND	ND	ND	ND	N/D	NO	ND
Le Dinire 2 methylph and									
		ND	NO NO	מא	ND	ND	ND	*	ND
N-Natura diplicity larges		ND	NO	NO	ND	ND	ND	ND	ND
4-Bransphenyl phenyl other		ND	ND	MO	ND	ND	ND	ND	ND
Heam photoproper		ND	ND	ND	ND	ND	NO	NO	ND
Alterim		ND	ND	ND	NO	ND	ND	NO	ND
Penta libraghand		ND	ND	ND	ND	ND	ND	DN	NÖ
Pho 12 willings.		19	ND	ţi1	a vz	ND	17	5.2	11.95
Naphthaless:		ND	944	5.4	N.M.	ND	11	12	ND
d-L free remonsterm		ND	ND	ND	ND	ND	ND	ND	ND
Herachlombuladarie		ND	ND	ND	ND	ND	ND	ND	ND
שווא אינורי		ND	NU	NO	κυ -	NO	ND	מא	NO.
Chlore I methylphenal		NB	NO	ND	ND	ND	DN	ND	ND
- As-dhylmaphthal-m-		ND	ND	25	0.3	NO NO	1.4	16	NO
tives blove velopentalism		ND	ND	МО	ND	NO	ND	ND	NO
A Ter bleverythermal		ND	ND ND	ND	ND	ND	ND ND	ND	ND
4,5 Ten Historphonis		ND	ND	ND	ND	ND	ND	ND	ND
.1' Stplieny!		ND	ND	ND ND	ND ND	ND	ND	14	ND

RESOURCE RECOVERY GROUP/CLAYTON CHEMICAL COMPANY (REQCLAYTON) SITE SOLIDS REMOVAL ACTION ANALYTICAL RESULTS STOCKPILE SAMPLES RCRA Total Contration/TSC/ Threshold 9/21/3006 1515 Beackgille MC 6/23/2006 925 Stockpile #6 ample Date ample Time tockpile f 4/21/2006 1425 V21/2006 4/22/2004 1465 Starkelly #3 Sherk wife of 4468 Stockpile 158 Stockelle 62 5-45226-GD-011 \$492304-CID-009 5-802164-CD-603 5-002205-GD-012 5-002106-CD-000 5-002106-GD-001 6-CD-407 \$-002106-CD-002 aspir ID of Sample Allquet 12 **(6 6mm 4, 4 from 48** Min ND 2-Chlomauphthalore ND ND ND ND ND ND ND NO ND NO ND Nitroneline ND ND ND ND NO ND ND ND ND Consession philodesis ND ND ND ND ND NO 2.0 Dimitrofolusio MD ND ND MO ND ND ND MD Accompletely to ND ND NĐ ND NO ND NO 1-Nitmando ND ND ND ND ND NO ND ND ND brazalak hyde hared NO ND NO ΝĐ not2-Cliftorrethythether ND ND MD MD ND ND 8 NO 2-Chicaraphenal ND ND ND ND NO ND ND ND Mithy leteral ND ND ND ND ND ND L2 csybe(1-Chlompropute) NO ND ND ND ND ND ND ND ND NO MD ND ND Ar-kydnouan ND ND ND ND ND ND HD ND ND NO ND Nontrough is propolation ND han bhen then ND NO ND ND ND ND NO Indenta-ND ND ND ND ND ND In April 1000. U.76 2.3 48 842 30 24 ND Nitrigational ND ND HO ND ND ND ND ND 2.4 Dimethylphonol ND ND ND ND ND ND ND ND his(2-Chimeirthisey)us than ND ND NO ND ND ND ND ND L4-Du hkmiptored ND NO ND NO ND ND ND Total SVOCs (mg/kg) 64.36 106.55 179.1 35.6 19.7 269.1 15.55 384 Steakpate Velume - max (tons) Steakpate Velume - max (kg) 261 10.174 117.515 27 45 24 226 Mires SVOCs (kg) 42 6.66 1.6 M.u.s 51'OC+ (6 ms) 0.630 0.007 8.873 4.007 8.002 0.027 B. 250 6.003 TOUR VOLATILE ORGANIC COMPOUNDS 1100 1,1 Duhkmarthus ND ND ND ND ND ND ND

0.13

0.73

D. LE

ND

6 91

0 17

ND

1.1

3.7

ND

7.831

ND

d fill

ND

ND

0.013

ND

NO

D 12

NO

6.229

ND

16

ND

0.18

ND

ND

0.14

U 24-

216

ND

1.8

U D46

ND

12

NO

NO

0.97

0.63

1.616

ND

25

0.061

ND

27

ND

ND

0 40

0.18

ND

5.861

ND

MO

NĎ

0.021

(1 CH) 57

NO

Danca

NĎ

ND

0.035

ND

0 13

0013

ND

0.11

ND

ND

031

u.12

ND

1.273

1.2 Dichloru than

1.4 Dichlerotement

arbun Telembhajale

Chlorib uzere

Middle thyl leave

Tetra bloresthere

Ten history the tw

Vinyti hkiridi:

fotel

Chherderm

Benzew

01051

0.14

11 647

710

0.00%

ND

051

0.33

NO

1.62

0.5

7.5

0.5

100.0

40

200 0

0.2

			SOLI	GROUP/CLAYTON CHIS DS REMOVAL ACTION A	NALYTICAL REPULT	APPENDICATION STILL			
				STOCKPILE SA	MPLES .				
	RCRA Toxic Concentration/TSCA Threshold								
iample Date		4/21/200s	W2V200	9/21/2006	\$/2\/ 380 6	1/23/2006	V2/2006	8/23/2006	\$/23/2006
Lamphy Tome		1425	1445	1446	1500 Stock pile 15	636 Stockpile #53	1515 Stockpde 15C	935 Stockpile 66	966 Sanckapile 67
Markpile 8]	Stockpile #2	Starkpile #3	Stock pile # Q408			l	l	L
Somple ID		5-462165-GD-606	8-estres-CD-set	\$-002505-CD-007 12 (6 from 6, 6 from 68)	8-863186-CD-880	6-002206-CE)-000 4 (2 from each sub-pile)	8-882101-CID-893	5-863996-CD-662 16	\$-662396-GD-86
No. of Sample Aliques			14				<u> </u>		L
						 		 	
OTAL VOLATILE ORGANIC	COMPOUNDS								
L.d.n.	T	ND	ND	ND	NO	ND	0.57	NO	MD
Links.									
l-tan-		1.2	043	ND	NO	ND	1.7	N N	ND
kremeda blommethere		ND	ND	ND	MD	ND	NO	ND ND	NO
beneral are	1	ND	ND	ND	MD	ND	MD	NO	NO
								Ī	
runnedi.us	—	ND	ND	ND	ND	ND	ND	ND	ND
Butmane		ND	ND	ND	ND	ND	ND	ND	ND
corte en damaliste	+	ND	ND	ND	ND	ND	ND	ND	ND
								ND	ND
in hear teates historials	+	ND	ND	NO NO	ND	NO	ND	NU	, AL
Taken de montes		6,6	6.3	40	0.85	76	27000	120	au
I development	 	ND	ND	ND	ND	ND	ND	NO	NO
Dakoviskurus		ND	ND ND	4.0	ND	ND	ND	ND	ND
Takerana-Ham-		ND	ND	ND	ND	ND	ND	ND	ND
ve forther matter	 	ND	МО	ND	ND	NO	NĎ	ND ND	ND
	1								
Department of Principles of Principles	 	ND	ND	NO.	ND	ND	ND	ND ND	MO
2-Dibrame 1-chlura propure		ND	ND	ND	ND	ND	ND	ND	MD
2-Diheamarthan	├	ND	ND	NED	ND	ND	ND	ND ND	МО
_ On blanchenous	 	45		61	3.9	260	AMI	250	Ni Ni
· Dechleredenser		1.7	2.4	1.3	0.59	5.8	49	72	Re3
.4-Dalikonskynzene		45		97	74	198	1 WH	2941	54
or say worth University and	 	ND	ND	NO	ND	ND	NO	ND	ND
1-Outskinstens		ND	ND	NO	ND	ND	rae	II AA	NO
2-Da blumetara	 	ND	ND	2.1	ND	ND	ND	NO	ND
	1								
~1.2-Dichlors there	 	4.7	11	1.6	76	20	52	2.1	ND
tame-1, 2. Do bloom them:		ND	ND	ND	ND	ND	ND	ND ND	ND
1-Du historia di sue	+	ND	ND	ND	ND	ND	ND	ND	ND
2-Dishkungengsane	 	ND	ND	ND	NO	ND	ND	ND	ND
- 1.1 Dichkungengen	1	ND	ND	ND	ND	ND	ND	ND	ND
ans 1,1.0chbeopropers		ND	ND	ND	MD	ND	ND	ND	ND
light norm	 	1.0	NO	10	ND	n,A4	12	R.3	ND
1 terror and	1	NO							
	<u> </u>		ND	ND	NĎ	ND	ND	ND	ND
dardageary n-		044	ND	1.9	ND	ND	2.7	11	ND
ethyl acetati	 	ND	ND	ND	ND	ND ND	ND	ND	ND
thybric districts	 	ND	ND	NO	ND	NO	ND	ND ND	ND
thuk ve kobereani	+	ND ND	ND	NO NO	ND	ND	ND	NO	ND

ND

ND

a 15

24

114

24

1.9

0.45

MD

ND

ND

21

R5

57

16

ND

ND

ND

61

11

14

2

ND

ND

ND

ND

21

11

ND

54

0.41

ND

ND

ND

ND

25

51

7 4

14

61

4 Abribs) 2 pentinase

Methyl a et butyl ether

1.1-2.2- Ferradikises sturi

Firt Can Islances trusts

1,2,4-Ten bloodsman

I.I. I-Tracisions those

1.1.2-Trichkwireth-ne

544414

ND

ND

a 145

ND

ND

120

пЧ

ND

ND

ND

ND

81

¥

13

21

12

ND

NO

ND

14(31)

17

ly

21

0.47

ND

			SOL	GROUNCLAYTON CHE	MALYTICAL RESULTS				
				STOCKPILE SA	MPLIS				
	RCRA Toxic Concentration/TSCA Threshold								
Sample Date		4/21/3004	8/21/2004	NAT/2004	9/21/2006 1506	3/23/2006 USB	6/21/2004 1515	6/22/2006 925	1/23/2006 906
Sample Time SmcSpile P	 	1625 Stockpile 92	Sincipile 8)	Stockpille # QNB	Stockpile 45	Blockpile #58	Stackpile 45C	Stockpille M	Stackpile #7
		5482166-GD-600	5-482165-GD-881	5-012105-CD-007	S-602166-CD-602	5-66/206-C(D-609	5-002104-CD-003	S-602206-GD-012	5-082201-GD-011
Sample ID Pro. of Sample Aliquots	 	8	H	12 ft from 4, 6 from 60)	•	4 (2 from each sub-pile)	•	16	16
Tra bhreadara		14	15	110	0,98	is .	М	7,5	NO
Ten fatoreithersone there	 	ND	ND	ND	MD	ND	ND	ND	ND
i., 2-Tradition 11.2 Instrumenthian	ļ	ND	ND	ND	NO	ND	ND	ND	ND
Vinyl chloride		ND	ND	ND	NO.	ND	ND	NO .	NO .
Kelena		22	ND	- 65	NID	1.4	61	27	ND ND
Total VOCs (mg/kg)		714.64	211.A3	445.3	43.42	516	214279.99	799.96	257.95
				· · · · · · · ·					
Sun kpde Volume - man (turn) Sun kpde Volume - man (tg)	ļ	350 317,515	250 226,796	460 362,874	200 181,437	100 90,718	(0.i 90,71d	630 569,479	225 204,117
Dire Klade, Actions Berge (65)	 	,517,315	28,79		INI,U/	- NOIN	90/10		B4(117
M.na VOCs (kg)		4	4	234	7.91	σ	39,439	672	n
Alaw VOCs (lim)		8.975	0.653	0.258	0.909	0.852	21-626	0.539	6.056
						 		 	
TOUP-PESTICIDES									
Chlerilar	0.003	NA	NA .	NA NA	NA .	NA NA	NA	NA NA	NA NA
Endrin	0.020	NA	NA.	NA NA	NA.	NA NA	NA	NA NA	NA .
gamnu SHC	•4	NA	NA .	NA NA	NA NA	NA .	NA .	NA NA	NA.
Hag-La Niku	0.000	NA	NA NA	NA NA	NA	NA	NA NA	NA .	NA NA
they have equality	0.005	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA
54. the repelator	18.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA
Terasphera	45	NA NA	NA.	NA NA	NA NA	NA NA	NA NA		
	- 3	17A	184	100	NA.	NA.	NA .	NA NA	NA .
TCLP HERBICIDES	 			 		 			
2.1 5-TP	1.0	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Tr D	10.0	NA	NA NA	NA NA	NA NA	NA NA	NA .	NA	NA .
	 			 		 			
CENERAL CHEMISTRY									
Cyanali		NA	NA .	NA NA	NA	NA .	NA	NA	NA .
Rea tree Sulfish		NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA
Pluradas		NA .	NA	NA NA	NA NA	NA NA	NA	NA	NA NA
Point Filter Tost		NA	NA	NA.	NA .	NA NA	NA NA	NA NA	NA .
Н		NA	NA NA	NA NA	NA NA	NA NA	NA .	NA .	NA NA
enridakty		NA.	NA NA	NA	NA	NA	NA	NA .	NA .
utractable Organic Haliakis		NA NA	NA NA	NA NA	NA	NA NA	NA .	NA.	NA .
Second Manager			13	12	FO	700	120	K9	IV.
				· · ·					·

- 1. All concentrations are reported in parts per million.
 2. Analytical distribution is from samples collected during 2005-08 Removal Action efforts.
 3. Analytical distribution is from samples collected against the RRA Towardy Oversholds, and TSCA threshold values.
 4. Evaluation cradends (climate) by in third for implicits.
 5. A cliad () in redumn 8 and a set that no evaluation threshold value found.
 6. Belief () in redumn 8 and a set that no evaluation threshold value.
 7. If A mount date was not analyzed for the set of th

RESOURCE RECOVERY CROUNCLAYTON CHRIMCAL COMPANY (RECCLAYTON) SITE SOLIDS REMOVAL ACTION ANALYTICAL RESULTS STOCKPRE SAMPLES

RCRA Tock accration/TSCA Thesshold \$/23/2006 1070 Seackpile # TP-07 6/23/3894 640 Stockards # 17-54 Sample Date Sample Time Stockpile # NZV2006 1525 nckpile # GP-S/GP-4 4/21/2004 1536 Stockpile # GC 1/23/3004 M33/3006 930 Stockpite # GP-30 Apdie o TP-34/TP-35 8-00200 CD-010 5-802206-CD-813 5-002306-CD-015 5-052105-CD-094 5-80366-GD-606 8-802304-GD-814 Sample (D No. of Sample Alique \$-662161-GD-696 TCLP Metals NA NA NA NA 54 NA NA NA 160.0 NA NA NA NA NA NA 1.4 NA NA NA NA NA NA NA ŇÁ 5.4 NA NA NA NA NA r-ad 5.0 NA NA NĀ NA NA NA NA NA Sel-mum 1.0 NA NA NA NA NA 3.0 NA NĀ NA NA NA 8.2 NA NA NA NA NA NA NA Analor 1016 ND MD ND MD ND ND ND Ansks 1221 ND ND ND ND ND ND ND Anniu 1212 ND ND ND ND Anuke 1242 1.3 0.77 ND ND ND ND res for 1248 ND ND ND ND ND MD NO Arender 1754 1.1 ND ND 4.4 'n 1,57 0.042 Anste 1341 ND ND ND ND ND ND Trail 24 125 057 Original Totals Original Sample Aliquets TCLP SEMIVOLATILE ORGANIC COMPOUNDS 2.4 5 Tra bloroplanul NĎ ND ND ND ND ND ND 2.4.10 Tra biborophisms ND ND 2.0 ND ND ND 2,4 Dimitritadia in άIJ ND ND ND ND ND 2-Meshelphaned 280.8 ÑD NĎ ND ND 1/4 Atomospherica 660.6 ND ND ND ND ND ND ND l head bloods to the ND ND ND ND ND 0.5 ND ND ND ND He was believe developed warper ND ND Here's block flame ND ND NO ND ND ND ND 2.0 ND ND Nilndran ND ND NO ND Procentian of the second ND NĎ 110.0 ND 190.6 ND ND ND

ND

ND

ND

ND

ND

ND

Total VOCs

5.0

ND

RESOURCE RECOVERY GROUNCLAYTON CHRIMICAL COMPANY (REGICLAYTON) SITE SOLIDE REMOVAL ACTION ANALYTICAL RESULTS

	SOLIDI RIMOVAL ACTION ANALYTICAL REPULTS STOCKPILE KAMPLES											
}												
	RCRA Toxic Concentration/TBCA Threshold						}					
Seruple Detr	1 44459400	6/3 f/3mpe	6/21/2004	9/21/2006	B/22/2004	6/22/2004	6/22/2004	6/22/2006				
Sample Time		1525	1536	1950	141	930	955	1010				
Stackpele 9		Stockpile 6 GP-S/GP-6	Stackpille # CC	Stockpilos Tir-SN/CC	Stockpile 6 TP-54	Stockpile & GP-80	Stockpile # TP-34/19-15	Stockpile # TP-47				
Sample ID		5-002106-GD-004	5-007106-GD-005	5-602106-CD-606	8-042396-CD-010	\$-982206-GD-913	1-95296-CD-914	5-062204-GD-015				
No. of Sample Aliquets	ļ	,	2	•	1	,	•	2				
TOTAL SEMIVOLATRE ORGAN	IC COMPOUNDS			 			 	<u> </u>				
			NO	HD	8.0%	ND	ası	427				
Brankfillinder		043										
Anthracien		ND	. 15	2.9	9077	ND	ND	ND				
Cartuzido		ND	ND	ND	ND	ND	ND	ND				
Di n-hwyl phibulub		0.2	ND	NO -	<u> </u>	ND ND	ai	0.044				
Fluoranthero		073	70	4.0	124	ND	GOSH	0.1				
Рупты		13	.72	V	1127	ND	n 09	11.2%				
Buty) henry) phihabis.		ND	ND	ND	ND	ND	U197	ND				
A. On pharescripture		ND	MD	NO	ND	ND	NO	ND				
B-ssecta junitem cor-		0.49	11	76	0.17	NO	ND	62.24				
Chrywn		0.71	91	13	0.16	ND	0,1795	033				
Free(2: Extrattor cyt)philippiate					0.29	0.36	KS.					
LONG S. EDIABA. (AN MATROCITY)		26	45	2.2				0 14				
De in in tyl phillestate		ЙD	NO	ND	ND	ND	MD	ND				
Bernadhijkenadhene		U.76	ND	26	013	NO	uns?	a by				
Berrye (k) Responsible to		11.6	ND	1.4	Pii	ND	0.044	029				
Bearing) perions		0,644	ND	25	911	ND	10843	8.7				
lendern (1,23 calpprone		0.44	ND	11.79	() UNA	ND	NO	#2N				
Delantatath kenthracina		ND	ND	ND	NO	ND	ND ND	011				
According		NO NO	0.91	ND	ND	ND	ND	ND				
2.4-Omskeydurad		NO	ND	ND	ND	ND	ND	NĎ				
1 Netrophysid		ND	ND	NO	ND	ND ND	ND	ND				
Delasconturan		ND	ND	ND	10%	ND	ND	ND				
2.4-Disserconductor		ND	ND	ND	NO NO	ND	ND	ND				
De-thyl philister		NO	NO	NO	ND	ND	ND	ND				
Fluctione		ND	UAN .	ND	ND	ND ND	NO	ND				
4-Cliberephenic period educe		ND	ND	ND	ND	ND	ND	ND				
4 Nitrounders		ND	ND	ND	NO	ND	DM	ND				
6.6 Distance 2 methylpherial		ND	ND	ND	ND	ND	ND	ND				
N-Nitronauliphamplamen		NO	ND	ND.	ND	ND.	NO					
				, ND	ND NO	ND	ND	ND				
4. Briden gelerrigt gebrungt influer		ND	ND	ND	ND	ND	ND	ND				
Heras tilondenium		NU	NO	ND	ND	ND	ND	ND				
Atrazate		ND	NO	ND	ND	ND	ND	NO				
Person hieropte red		ND										
			ND	NO NO	ND	ND	ND	ND				
Phenkusikons		1125	14	29	0.2	ND	0.05	013				
Naphilhalim		ND	ND	ND	Other	ND	nah	ND				
4 Chlomoradon		ND ND	ND	ND	ND	ND	ND	ND				
Herandship dutalore		ND	ND	NO	ND.	NO	ND	ND				
Captolar type		שא	NU	MO	ND .	NU	NU	ND				
4-Chloric Smithylphonia		ND	ND	NO	NO	NO	ND	ND				
2.Mediculmaphthabas		ND	17	11	833	סא	ND ND	ND				
the age belower to high relative per		ND	ND	MD	ND	ND	ND	ND				
2.4.6 Traditionplants												
		ND	ND	ND	ND	ND	ND	ND				
2.4.5 Tru fikusyfamid		ND	ND	ND	ND	ND	ND	ND				
LY Biphenyl		ND	ND NO	ND	014	ND	ND	ND				

Total VOCs

RESOURCE RECOVERY GROUP/CLAYTON CHIMMICAL COMPANY (RACYCLAYTON) SITE SOLIDS RIBNOVAL ACTION ANALYTICAL RESULTS											
				OCKPILE SAMPLES							
	RCRA Tear Concentration/TSCA Threshold										
Sample Date	I	4/11/2006 1525	1/21/2006 1.535	4/21/2006 LSSO	6/23/8006 840	4/23/2006 130	4/23/1894 168	6/22/2006 1016			
Sample Time Stockpile 8		Seechpile F GP-S/GP-6	Stockpile # GC	Stackplied TR-SQCC	Stockpile I TF-54	Stockarlie d GP-20	Stockpile 6 TP-24/TP-25	Stockpile # TP-47			
Sample ID		5-012105-CD-004	5-662104-CD-605	5-002004-CD-406	5-002004-GD-410	\$-082204-CD-013	6-002204-CD-014	5-142396-CD-015			
No. of Sample Aliquots		,	2	•	1	1					
2 Chiunnaphthubra		ND	ND	NO	ND	ND	ND	NO			
2-Metrometiles		ND	ND	ND	ND	ND	ND	ND			
Dam-Carl phthalat-	<u> </u>	ND	ND	ND	ND	_ND	NO	, MO			
26-Dinimentorn		ND	ND	MO	ND	_ND	NO	ND			
As maphiliphes		ND	ND	ND	ND	ND	ND	ND			
1-Nitresenters		ND	ND	NO	ND	ND	ND	ND			
Beneald-trud-		ND	ND	ND	ND	ND	ND	ND			
Pienel		ND	ND	ND	ND	ND	ND	ND			
nu(2-Chloristhyllethor	<u> </u>	ND	NO	NO	ND	NO	ND	ND ND			
2. Chlory desard		ND	ND	ND	ND_	NO	ND	ND			
2 Methylphernal		ND	ND	ND	ND	ND	ND	NO			
2.2'enytra(I-Chimperpare)		ND	ND	ND	ND	ND	ND	ND			
A. reiptemen		ND	ND	ND	ND	ND	NO	ND			
Mainzalen jarjylama		ND	ND	ND	ND	ND	ND	ND			
Head bless these		ND	ND	ND	ND	ND	ND	ND			
Nitrateachte.		NID	NO	ND	ND	NĎ	ND	ND			
Luphanian		ND	NO	ND	ND	ND	Q1 4	ND			
2-Netrophenes		ND	ND	NO	NO	ND	NO	NO			
2.4 Date-shydpla-sad		ND	ND	ND	NO	ND	ND	ND			
June 3 - Claber to Alberta Alberta de prosente		ND	NO NO	ND	ND	ND	ND	ND			
2.1 Dubbasythraud		ND	NO NO	ND	ND	ND	ND	ND			
Tine SVOCs (mg/kg)		9.22	77.4	76.79	2.524	78.79	9.363	3.06			
San Lynk-Vidues max (bves)		.701	75	1125	75	12	120	15			
San apple Volume - mar. (kg)		27,216	FALETY	142,054	VIIII	IIIJAK	Y0U62	1/48			
Marin SVOCA (fect)		0.251	\$.360	8.0(1	8.617	0.85L	1,019	0.043			
Mars SVOC+ (bess)		0.8063	0.0054	6.000	0.0000181	8.0009655	0.8011236	8.0000475			
TCLP VOLATILE ORGANIC CO	MPOUNDS										
1,1 Oo blogs there:	1.7	ND	ND	ND	ND	ND	ND	ND			
1.2 Du hlanwitsane	ā.s	ND	NO	ND	ND	NO	ND	ND			
1,4 Duhloushenzen	75	UMŽJ	01054	0 020	0.6%	0.023	0.012	0,0051			
Barrelo per	85	ND	0 mi 5	11,414(2	ND	ND	ND	NO			
Carron Tetrathhrale	8.5	ND	ND	NO	NO	ND	ND	ND			
Chientenorm	100.0	NED .	ND	- ON	מא	n dul's	(1,007	ND			
Chlistotem	64	ND	NO	NO	ND	ND	ND	ND			
Mahyl ethyl letene	299.0	ND	ND	ND	NID	ND	NO	NO			
Tellin his resiliants	8.7	0.59	0.019	U 10	NO NO	70	(COUNTY)	ND			
Tru libera there	85	agen	0.013	D.OR.V	ND ND	ND	u 016	ND			
Vouvichkwah		ND ND	ND ND								
	eu_			ND	ND	ND	ND	ND			
Tetal	-	0 432	6.564	0.215	0.636	0.4324	0.0439	0.0051			

Total VOCs

0.45

CRA Physic # 042195

RESOURCE RECOVERY CROUNCLAYTON ONEMICAL COMPANY (RECCLAYTON) SITE SOLIOS REMOVAL ACTION ANALYTICAL RESULTS STOCKPILE SAMPLES

			51	OCKPILE SAMPLES				
	RCRA Toric Concentration/TSCA Threshold							
Sample ()ate		6/21/2006	W11/2006	B/21/8006	4/23/2004	1/23/30%	9/23/2006	L/23/2006
Sample Time	<u> </u>	1535	1536	1990	149	136	965	1000
Stockpile #		Smckpile# GP-5/CP-6	Stockplic # GC	Stockpilot 17-89/CC	Stockpile # TY-54	Stockpilly 8 CP-20	Stockpile 9 TP-24/TP-25	Stockpile 9 TP-67
Sample ID	 	5-012105-GD-004	9-002109-CID-005	8-002105-GD-005	\$-002305-GD-010	5-002306-C(D-013	5-862204-CXD-814	5-002206-GD-015
No. of Sample Aliquots	· · · · · ·	3	2	•	2	2	•	2
		ļ	ļ					
	—							
TOTAL VOLATILE DRICANIC C	OMPOUNDS							
Aurka-	 	ND	9.44	ND.	MD	0.455	ILOUAL	011
							Time!	110
Bush.	 	ND .	ND	ND	0,0	IIDTY	trib(4	ND
Brottwale blows and there-		ND	ND	ND	ND	ND	ND	ND
Bromstern		ND	MD	NID	ND	ND	ND ND	ND
DIGHT IN								
Greens was the are		ND	ND	ND	ND	ND	ND	ND
7-8stmm	 	ND	ND.	HED	ND	9.047	01045	ND
Carthyn disedliek:		ND ND	ND	ND_	ND ND	ND	ND	ND
Cartem when lakerale		ND	ND	ND ND	NO	ND	ND	ND
Chlorodonyma	 	ND	0.26	ND ND	ND ND	ND	(IANT22	ND
Chlenothus	 	ND	ND	ND	NO NO	ND	ND ND	ND
Chkstellerm		ND	ND	ND	ND	0014	ti (##174	ND
		- 40	ND	150	ND	ND	ND	NĎ
Chimmen there		ND	ND	ND				
Cyclohesane		ND	NO	MD	NO	ND	ND	ND
Delwere a this requirileant		ND	NO	ND	ND	ND	ND ND	ND
1,2 Otherms Uchkins-propores		ND	ND	MD	ND	ND	ND.	ND
1,2-Debromo-Usano		ND	ND	ND	ND	ND	ND	ND
1,2-De Monde russia		059	051	ND	1.077	ND	COMP1	ND
1,2-104 RESPONSE TEXT IN			0.31	NU		NO	duin.	
1.3-Dahkadenzen		ND	MD	ND	MD	ND	ND	ND
1,4-Dichloroberoene		12	5.4	2.4	611	ugta	O DODAN	ND
D. Maria		ND	ND	ND	MD	ND	410	ND
Dis Mercul il ligere consettatur			NO.			NU NU	ND	NU
1,1-Dichloris-thatis		ND	ND	ND	ND	ND	NO	ND
1.2 Delikinediani		NO NO	NO	ND	ND	ND	ND	ND
r>1.2 On blen rethere		0.16	ND	1.4	ND	0.003	u Du2n	ND
trates 1.2 Databases/those-		ND	ND	ND	NO NO	ND	ND	ND
		, ND		ND				
1,1 On historia per			ND	- ND	NO	ND	ND	ND_
1.2- On belongen gran-		ND ND	ND	ND	ON CIN	NO	ND	ND
to 1,1 Octoberopropring		ND	ND	ND	ND	ND	ND	NO
rate-1.3 De blorgrogste	T	ND	ND	ND	ND	ND	ND	ND
							-	
thellern, m		0.53	ND	ND	0 13	ND	0.012	ND
Herantieme:		ND	ND	ND	NO	ND	ND	ND
or the state of th		ND	ND	ND	0.13	ND	ND	ND
No the fact late		ND ND	ND	ND	NO	ND	NO	ND
Mi Phylian i filorale		ND	DN	MD	ND	0.00.02	B.GJA	ND
detherh or hele same	7	ND	ND	NO	ND	ND	ND	ND
								110
Mi-High 2 (unthanner		ND	ND	ND	ND	ND	ND	ND
dethal ten bulylether		ND	ND	ND	MD	ND ND	ND	ND ND
(Mtc.1p.		ND	ND	NP.				
				ŅŌ	ND	ND	ND ND	(I) ISA
1.2.2 Tetrachloroethane		ND	ND	ND	ND	ND	ND	ND
rites fikujudhen		.19	2.0	71	ND	0.12	0.069	16
itueni		11.7%	ND	#32	<u> </u>	0.2	Dille	ND
2.4 Traditional and a second		NĐ	60	18	ND ND	ND	ND	ND
1.2 Traditore-thurs-		1.9		22	ND	0.12	34772	
							0.0071	(105)
1.2 Trablemethers	I	NO	ND	ND	NO	ND	ND	ND

Total VOCs

		NE PONCE I	SOLIDA REMOVA	AYTON CHEMICAL COM LL ACTION ANALYTICA	L RESULTS			
			វា	OCKPILE SAMPLES				
	1							
	RCRA Toxic Concentration/TSCA Threshold	1						
Sample Date	 	\$/21/2006	L/T1/2006	4/21/2004	¥22¥2004	4/22/7806	Q/22/7804	L/2.1/2006
Sample Time		1525	1535	1,590	840	930	965	1010
Stockpile D		Stockpile 4 GP-S/GP-6	Starkpile # CC	Suckpiles TP-SI/GC	Stockpille # TP-64	Stockpile 6 GP-20	Stockpile # TP-24/TP-25	Stockpile # TP-47
Sample 10		\$-662105-CD-004	5-982165-CID-865	5-002106-GD-004	2-067302-CID-010	5-413394-CD-413	8-462204-GD-914	\$-662266-CD-015
No. of Sample Aliquots		3	· · · · · · · · · · · · · · · · · · ·	•	2	2	·	2
Trichlaria there	 	14	0.46	25	ND	0.2	a.ets	0072
Tricking theory and here	 	ND	ND	HO	ND	ND	ND	ND
1.1.2-Tra biron-1,1,2	 							
influenthin	 	В	ND	ND	MD	ND	NO	ND
Veryt chkeride		ND	ND	MD	ND	סא	ND	ND .
Kylenes	 	11	NŌ	HD	1.0	0.019	0,0075	ND
Total VOCs (mg/kg)		446	16.21	19.82	1.217	9,676	0.01361	1.92
Suckeph Veterne Ban (une)		v	75	112.5	7.5	12	120	15
Stirk Lpub - Vidunio - mex. (kg)	-	27,216	68,739	102,654	KMH	In the second	108,862	13,48
Mane VOCs (ky)	†	1.330	t. 140	2.423	1,000	0.010	6.019	4.426
Mores VOCs (torss)	<u> </u>	0.0015	6,001.2	6.8022	0.0000091	9.00001465	6.8600111	0.60002568
	 						 	
TCLP-PESTICIDES								
Chkrian	0.00)	NA NA	NA NA	NA.	NA	NA.	NA.	NA
Endern	1,530	NA NA	NA_	NA.	NA.	NA NA	NA NA	NA .
Saurare BatC	0.1	NA .	NA	NA.	NA	NA.	NA.	NA
riepsa khe	0.006	NA NA	NA	NA NA	NA	NA.	NA.	, NA
thepharbles opening	1.301	NA NA	NA .	NA .	NA	NA.	NA.	NA
Marthum ye hikar	10.0	NA	NA	NA NA	NA NA	NA NA	NA	NA
Turaphers	es .	NA .	NA NA	NA NA	NA	NA NA	NA NA	NA .
TCLF HURBICIDES								
47 F A	1.0	NA NA	NA .	NA.	NA	NA NA	NA NA	NA
24 D	194	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
CEMBRAL CHEMISTRY								
(v.mah		NA NA	NA .	NA NA	NA NA	NA NA	NA NA	NA
Cover States de		NA NA	HA.	NA NA	NA NA	NA NA	NA NA	NA NA
Phenicipa		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Part filler fest		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ы		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NÁ NÁ
recisive listy		NA NA	NA .	NA NA	NA NA	NA NA	NA NA	NA NA
alran bahb Oryana Hababa		NA	NA.	NA	NA	NA.	NA	NA
Treated Meanings	}	78	11	4.0		23	76	63
	1						 	

Nutra

Total VOCs

20,373.10

22.66

Bates.

All can entrations are experted in parts per million.

Altidytical data systems of men samples collected during 30/5-b. Romanial Action of forb.

Altidytical data systems of men samples collected during 30/5-b. Romanial Action of forb.

Altidytical data systems on the specific collected of the RCRA Trensity the solutions and TSCA directed during.

A shock (-) in column B united to that no constitution throughout was feated or all the systems data that constitution throughout was feated or before the specific during the specific duri

DRAFT

RRG/Clayton Chemical Site Sauget, St. Clair County, Illinois Field Sample Key Stockpile Re-characterization/Soil Milling Field Trial

Sample Dates: August 21-23, 2006

PID Readings (ppm) (Highest Reading

Date	Time	Sample Identification	Location	from Composite)	Comments
Soil Characte	erization Sa	mples			
					Sample composite of 16 sample locations within stockpile.
8/21 /2 006	1445	S-082106-GD-001	Stockpile #3	N/A	
8/21 / 2006	1500	S-082106-GD-002	Stockpile #5	N/A	Sample composite of 6 sample locations within stockpile.
8/21/2006	1515	S-082106-GD-003	Stockpile #5C	N/A	Sample composite of 2 sample locations within stockpile.
8/21/2006	1525	S-082106-GD-004	Stockpile #GP-5/GP-6	N/A	Sample composite of 3 sample locations within stockpile.
8/21/2006	1535	S-082106-GD-005	Stockpile #GC	N/A	Sample composite of 2 sample locations within stockpile.
8/21/2006	1550	S-082106-GD-006	Stockpile #T50/GC	N/A	Sample composite of 6 sample locations within stockpile.
			·		Sample composite of 12 sample locations within stockpile.
8/21/2006	1605	S-082106-GD-007	Stockpile #4/4B	N/A	
8/21/2006	1625	S-082106-GD-008	Stockpile #2	N/A	Sample composite of 8 sample locations within stockpile.
8/22/2006	0830	S-082206-GD-009	Stockpile #5B	N/A	Sample composite of 4 sample locations within stockpile.
8/22/2006	0840	S-082206-GD-010	Stockpile #TP-54	N/A	Sample composite of 2 sample locations within stockpile.
			•		Sample composite of 16 sample locations within stockpile.
8/22/2006	0905	S-082206-GD-011	Stockpile #7	N/A	, , , , , , , , , , , , , , , , , , ,
					Sample composite of 16 sample locations within stockpile.
8/22/2006	0925	S-082206-GD-012	Stockpile #6	N/A	
8/22/2006	0930	S-082206-GD-013	Stockpile #TP-20	N/A	Sample composite of 2 sample locations within stockpile.
8/22/2006	0955	S-082206-GD-014	Stockpile #TP-24/TP-25	N/A	Sample composite of 8 sample locations within stockpile.
8/22/2006	1010	S-082206-GD-015	Stockpile #47	N/A	Sample composite of 3 sample locations within stockpile.

DRAFT

RRG/Clayton Chemical Site Sauget, St. Clair County, Illinois Field Sample Key Stockpile Re-characterization/Soil Milling Field Trial

Sample Dates: August 21-23, 2006

PID Readings (ppm)
(Highest Reading

Date	Time	Comple Identification	Location	(Highest Reading	Commente
	Time	Sample Identification	Location	from Composite)	Comments
Soil Milling S	amples				
					Pre-Milling Sample from composite of approximately 8-12
8/22/2006	1410	S-082206-GD-016	Stockpile #3	363.4	Cubic Yards
8/22/2006	1442	S-082206-GD-017	Stockpile #3- Post Treat	112.7	Post treatment sample
			•		Pre-Milling Sample from composite of approximately 8-12
8/22/2006	1510	S-082206-GD-018	Stockpile #5	14.4	Cubic Yards
8/22/2006	1544	S-082206-GD-019	Stockpile #5 - Post Treat	6.8	Post treatment sample
			·		Pre-Milling Sample from composite of approximately 8-12
8/22/2006	1610	S-082206-GD-020	Stockpile #4	290	Cubic Yards
8/22/2006	1628	S-082206-GD-021	Stockpile #4- Post Treat Rnd 1	12.8	Post treatment sample
8/22/2006	1640	S-082206-GD-022	Stockpile #4- Post Treat Rnd 2	580	Post treatment sample
		•	·		Pre-Milling Sample from composite of approximately 8-12
8/23/2006	0915	S-082306-GD-023	Stockpile #2	1668	Cubic Yards
8/23/2006	0930	S-082306-GD-024	Stockpile #2 - Post Treat Rnd 1	1068	Post treatment sample
8/23/2006	0955	S-082306-GD-025	Stockpile #2 - Post Treat Rnd 2	307	Post treatment sample
			·		Pre-Milling Sample from composite of approximately 8-12
8/23/2006	1015	S-082306-GD-026	Stockpile #6	907	Cubic Yards
8/23/2006	1030	S-082306-GD-027	Stockpile #6 - Post Treat Rnd 1	1362	Post treatment sample
8/23/2006	1050	S-082306-GD-028	Stockpile #6 - Post Treat Rnd 2	301	Post treatment sample
			•		•